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Novel massive ground states of spin chains in a magnetic field?
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Abstract. Novel massive quantum states appearing in spin chains under a strong magnetic field are dis-
cussed. These states lead to plateaus in magnetization curves. When the systems are axially symmetric
and the field is applied parallel to the symmetry-axis, the phenomena are analogous to metal-insulator
transitions. Striking features of the plateau phenomena – exactness and rationality – are explained as con-
sequences the commensurability condition to the underlying lattice. The effects of the planar anisotropy
are also discussed in detail.

PACS. 75.10.Jm Quantized spin models – 75.60.Ej Magnetization curves, hysteresis, Barkhausen
and related effects – 75.30.Gw Magnetic anisotropy

1 Introduction

The last decade has witnessed a remarkable progress in un-
derstanding of low-dimensional spin systems. Particularly
in one dimension (1D), quantum fluctuations are strongest
and even problems, which are rather easy (and sometimes
trivial) in their classical version, may become highly non-
trivial ones at the quantum level.

For example, the classical 1D Heisenberg model (the
O(3)-invariant vector-spin model) can be solved for finite
temperatures as well as for zero temperature [1] and the
spin quantum number S plays only a quantitative role.
However, its quantum version has not been solved except
for the spin-1/2 case [2] and several analytical and numer-
ical arguments have been given to show that the ground
state of it is quite different according to whether the spin
quantum number S is integer or not [3,4].

The above conjecture due to Haldane sparked the
study of one-dimensional disordered singlet ground states
(some people call them spin liquids). Among them, there
is a class of ground states called valence-bond solid (VBS)
states [5,6]. They are shown [5] to possess important fea-
tures of the integer-S antiferromagnetic Heisenberg chain
predicted by Haldane [3]. Now it serves as a good starting
point in discussing the Haldane-like spin liquids.

Another simple but interesting ground state with an
excitation gap was found long ago by Majumdar and
Ghosh [7]. They found that the ground state of the antifer-
romagnetic S = 1/2 Heisenberg model with a frustrating
next-nearest-neighbor (NNN) interaction (or the S = 1/2
2-leg zigzag spin ladder) is exactly known when the NNN
coupling is half the strength of the nearest-neighbor one;
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the translational symmetry of the original model is bro-
ken in the infinite-volume limit and two degenerate ground
states appear. In the following, we will see that interesting
magnetization processes are observed when an external
magnetic field is applied to similar models.

All massive (or, short-ranged) ground states described
above are realized when no external field is applied. Then,
we may ask whether this kind of gapped ground states is
possible even in the presence of the field. Although there
exist several exceptional cases, it has been believed that
the text-book figure of the magnetization curve of anti-
ferromagnets is correct qualitatively. Namely, the value
of magnetization increases monotonically once the field
has exceeded some critical value (e.g. spin-flop field). This
seems quite natural since the vector spins are canted along
the applied field and they gradually align as the field is in-
creased. Even for the case of the S = 1 Heisenberg antifer-
romagnetic chain, which has quite a non-classical ground
state, the magnetization curve [8,9] does not seem, at least
qualitatively, to contradict with the above picture. When
the magnetization curve is smooth as a function of the
field, as is observed in many experiments performed on
(quasi-)one-dimensional spin systems or in numerical cal-
culations [10] carried out for the spin-S Heisenberg model,
we may expect the finitely magnetized ground states to be
gapless.

In higher dimensions, several examples [11] have been
known which do not exhibit monotonically increasing
magnetization curves. For example, in the spin 1/2 Heisen-
berg antiferromagnets on a triangular lattice, various mag-
netization processes appear according to the strength of
the 2-body and the 4-body exchange interactions [12].
These plateaus are explained by a vector-spin model.

However, quite recently, the possibility of having non-
smooth magnetization curve has been pointed out by
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several authors [13–19]. For some region of the param-
eter space, magnetization curve contains intermediate1

plateaus. Furthermore, a plateau predicted in [14] for the
S = 1 dimerized (or, bond-alternating) chain was exper-
imentally observed [20] at half of the saturated magneti-
zation.

At least for models known so far, the values of mag-
netization (per site) mz, at which plateaus appear, seem
robust against a small change in the model parameters,
that is, plateaus appear exactly at certain special values.
Throughout this paper, the word magnetization denotes
the z-component of total spin (Sztot) divided by the num-
ber of spins.

Moreover, all these values are rational. Therefore, the
most important problem to be solved would be to explain
the above mentioned (i) exactness and (ii) rationality.

Of course there may be several approaches to solve
this problem. In the present article, we stress analogy to
the theory of the charge-density waves (CDW) and metal-
insulator transitions (see [21,22] for reviews). In our ap-
proach, the two important features of the phenomena are
explained analogously to those in metal-insulator transi-
tions.

The plan of the present paper is as follows. In Section 2,
we take two typical models as examples and explain how
the unexpected plateaus appear naturally in certain limits.
The analogy to metal-insulator transitions which help us
understand these phenomena is discussed.

Another approach to plateau phenomena bosonization
is explained in Section 3. This relies on the fact that
the low-energy property of many (axially symmetric) one-
dimensional systems can be captured by considering the
effective Tomonaga-Luttinger Hamiltonian. Using the ma-
chinery of bosonization and the analogy to the theory of
CDW, we can to some extent understand why the plateaus
appear for certain special values of mz. This approach is,
in a sense, complementary to the one presented in Sec-
tion 2.

The effects of axial-symmetry breaking anisotropies
are discussed in Section 4. Here, by the word “axial-
symmetry” we mean rotational symmetry with respect to
the direction of the applied field. In general, it simplifies
the situation a lot; the field only couples to a conserved
quantity and its effect is the same as that of chemical
potential. Although close analogy to many-particle sys-
tems holds in many respects, the spin chains are quite
different from particle systems in that axial-symmetry
breaking anisotropies are allowed to exist. Hence, it is im-
portant to consider the stability of plateaus against such
anisotropies also from experimental viewpoint. It is shown
that the effects are different depending upon the types of
the gap-generating interactions and that the existence of
anisotropy can alter the transitions qualitatively.

The main results are summarized in the final section.

1 Hereafter we use the terminology plateau for plateaus ap-
pearing for finite values of magnetization.

2 Massive ground states in a magnetic field

In the present section, we consider the physics underlying
the plateau phenomena. Throughout this and the next
sections, we assume that the systems are rotationally in-
variant around a given axis.

Among models which are known to have plateaus,
we take the following two ones. The first is the spin-
S bond-alternating Heisenberg model with a frustrating
next-nearest-neighbor (NNN) interaction:

Halt =
∑

i:chain

[1− (−1)iδ]Si·Si+1 + J2

∑
j:chain

Sj ·Sj+2 .

(1)

The strength of bond alternation is controlled by the pa-
rameter δ(≥ 0) (the model becomes uniform when δ = 0
and completely decoupled when δ = 1). Such geomet-
rically frustrated materials have been found [23,24]. Al-
though all directions are equivalent, we assume that the
external field is parallel to the z-axis purely for the clarity
of the argument. That is, the Zeeman term is given by

HZeeman = −H
∑
j

Szj . (2)

The value of magnetization is, of course, given by dividing∑
j S

z
j by the number of spins.

The other interesting model is the spin-S Heisenberg
chain with the single-ion anisotropy:

HD = J
∑
j

Sj ·Sj+1 +D
∑
j

(Szj )2 . (3)

The direction of the external field is essential here and it
is applied in the z-direction. Of course, the D-term makes
sense only for S ≥ 1. Formz = 0 and S = 1, the model was
extensively studied [25] in the context of the Haldane-gap
problem.

We begin with the first model Halt. The zero-field case
(mz = 0) was investigated by many authors (for example,
see [7,26–32] and references therein). In the following, we
consider what happens to this model for mz > 0.

According to a naive (classical vector-spin) picture de-
scribed above, the magnetization curve is monotonically
increasing as a function of the applied field, namely, low-
est magnetic excitations carrying the Sz-quantum number
± 1 are gapless.

However, by a simple (but quantal) argument, we can
see that this is not always true for several models. Con-
sider, for example, the first model with S = 1 and J2 = 0.
The magnetization process for δ = 1 is trivial since the
system becomes an assembly of two-spin systems; mag-
netization per site mz abruptly increases from zero to
mz = 1/2 at H = 1 and then it remains constant un-
til the field H exceeds 2, where mz again jumps up to
the saturated value 1. That is, the plateau at mz = 1/2
appears.

Of course, this is not surprising since the magnetiza-
tion curve for finite (2-spin) systems is always step-like.
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Nevertheless, even if we include a small inter-dimer cou-
pling

J ′ ≡
1− δ

1 + δ
, (4)

we can show that the above mz = 1/2-plateau persists as
long as |J ′| is sufficiently small whereas the vertical parts
of the curve have finite slopes. This can be readily gen-
eralized to the spin-S case; there are 2S − 1 intermediate
plateaus when mz = half − integer and δ ≈ 1.

The physics here becomes clearer by the following in-
terpretation. First, we regard the case δ = 1 as a kind of
the atomic limit of the Hubbard model. In this limit, the
appearance of the plateau phase (= insulating phase) is
natural as has been described above. Of course, here the
increment of Sz2i + Sz2i+1 plays a role of a particle. For
spin-chain problems, particles can be different according
to the value of magnetization.

For clarity of the argument, we focus on the spin-1
case of Halt. The physics will be most easily understood
for δ ≈ 1 and J2 ≈ 0; the exchange interaction on strong
bonds (1 + δ) is dominant and the others may be taken
into account by the low-order perturbation. To this end,
it is convenient to use the 9 states on a strong bond

|singlet〉 , |triplet(Sz)〉 (Sz = 0,±1),

|quintuplet(Sz)〉 (Sz = 0,±1,±2) (5)

as a basis. Within a sector with a given value of Sztot, only
the lowest states are important to the magnetization pro-
cess. For δ = 1, J2 = 0, such lowest states can be found
quite easily; among the above 9 states, only |singlet〉 (va-
cancy) and |triplet(1)〉 (particle) (|triplet(1)〉 (vacancy)
and |quintuplet(2)〉 (particle)) for 0 ≤ Sztot ≤ L/2 (for
L/2 ≤ Sztot ≤ L) contribute to the lowest states. Of course,
L denotes the number of spins on a lattice and is assumed
to be an integer-multiple of four.

Then, we include a small deviation of δ from unity to
allow (weak) correlation between strong bonds. We ex-
tend the method used in [19]. The spin operators can be
rewritten as 9× 9-matrices using the 9 states on a strong
bond as basis. The interactions on weak (1−δ) bonds and
the NNN exchange (J2) can be written down in terms of
these 9×9-matrices. However, within the lowest-order per-
turbation it is sufficient to keep only two of them |singlet〉
(vacancy) and |triplet(1)〉 (particle) (|triplet(1)〉 (vacancy)
and |quintuplet(2)〉 (particle)) for 0 ≤ Sztot ≤ L/2 (for
L/2 ≤ Sztot ≤ L). Regarding the particles as spinless
fermions created on the rth strong bond by the operator
c†r, we can write down the the first-order effective Hamil-
tonian describing the low-energy dynamics of the above
restricted Hilbert space:

H(I)
eff =

2

3

[
2J2 − (1− δ)

]∑
r

(
c†rcr+1 + c†r+1cr

)
+

1

4

[
2J2 + (1− δ)

]∑
r

nrnr+1 + (1 + δ)
∑
r

nr

(6)
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Fig. 1. Schematic δ-H phase diagram for Halt with S = 1 and
J2 = 0 (see [14] for the precise one). The mz = 1/2 plateau
phase is shown as a gray portion. It corresponds to the Mott
lobe.

for 0 ≤ Sztot =
∑L/2
r=1 nr ≤ L/2, and

H(II)
eff =

1

2

[
2J2 − (1− δ)

]∑
r

{
c†rcr+1 + c†r+1cr

}
+

1

4

[
2J2 + (1− δ)

]∑
r

(nr + 1)(nr+1 + 1)

+ 2(1 + δ)
∑
r

nr +
L

8

[
2J2 + 3δ + 5

]
(7)

for L/2 ≤ Sztot =
∑L/2
r=1(nr + 1) ≤ L. Note that the pres-

ence of the weak bonds and the NNN interactions induce
both the hopping (∼ [2J2 − (1 − δ)]) and the nearest-
neighbor (density-density) interaction between particles
(∼ [2J2 + (1− δ)]).

The mz = 1/2 plateau mentioned above can be at-
tributed to the change in the “chemical potential” term
from (1 + δ)

∑
j nj (for 0 ≤ Sztot ≤ L/2) to 2(1 + δ)

∑
j nj

(for L/2 ≤ Sztot ≤ L) and exists already in the 2-site limit
J2 = 0, δ = 1. Effective hopping of particles induced by
both J2 and 1−δ reduces the width (∼ 1+δ) of the plateau
by an amount ∼ |2J2 − (1 − δ)|. Of course, to what ex-
tent the above plateau persists is beyond our lowest-order
perturbation. However, we may expect that it does down
to some critical values of J2 and δ at which the hopping
overcomes the energy cost (∼ 1 + δ) on strong bonds. The
numerical calculations [14,33] and bosonization argument
[16] shows that the critical value δlowerc = 0, δupperc = ∞
for J2 = 0.

If we regard the energy cost as a kind of “Coulomb
interactions”, this is analogous to what occurs in the
metal-insulator transitions [22]; when the “hopping” is
much weaker than the “Coulomb interaction”, the sys-
tem is a commensurate (one particle per bond) insulator.
The “particles” are almost localized on strong bonds (see
Fig. 2b) in the plateau phase. In Figure 1, we show a
δ-H phase diagram of Halt (S = 1, J2 = 0) schemati-
cally (see [14] for the precise one). The region indicated
by “plateau” corresponds to the Mott insulating phase in
the many-particle language.

However, interestingly enough, the existence of
the NNN interaction (J2) stabilizes other types of
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Fig. 2. Schematic drawing of the magnetization curve of the
model Halt(S = 1) for |δ − 1|, J2 � 1 and expected states at
each value of mz, (a) mz = 1/4, (b) 1/2, and (c) 3/4. Density
waves are also shown schematically by dotted lines.

commensurate states at mz = 1/4 and 3/4. To see this, it
is convenient to consider the case 2J2 + δ = 1 where the
hopping of “particles” vanishes (see (6, 7)). In this case,

it is easy to obtain the energy levels of H(I)
eff and H(II)

eff ;

the level spacings change at mz = 1/4, 1/2, and 3/4. This
implies that plateaus with width [2J2 + (1− δ)]/2, (1 + δ),
and [2J2 + (1 − δ)]/2 appear at mz = 1/4, 1/2, and 3/4,
respectively. Note that the widths of the first- and third
plateau are much smaller than that of the second one.

Of course, the hopping (∼ [2J2 + δ − 1]) again may
smear out the plateaus. The critical point can be ob-
tained by noticing that the above effective Hamiltonians
are nothing but those of the S = 1/2 XXZ chain. From
the exact results [34], the plateaus at mz = 1/4 and 3/4
are stable if the Ising anisotropy ∆eff satisfies the
condition

∆
(I)
eff =

3(2J2 + (1− δ))

16|2J2 − (1− δ)|
> 1 for mz =

1

4

∆
(II)
eff =

2J2 + (1− δ)

4|2J2 − (1− δ)|
> 1 for mz =

3

4
· (8)

Note that the above conditions can not be met for J2 = 0
(a purely alternating chain) or δ = 1 (two-site problem).
That is, these plateaus are realized in fan-shaped regions
around the Shastry-Sutherland line [7] as consequences of
a non-trivial interplay between the bond alternation and
the frustrating NNN interaction. Similar mechanism of

stabilizing the mz = 1/4-plateau [18] in the S = 1/2 case
was found in [19]; the region of the plateau for S = 1/2 is
qualitatively the same as the above ones. We show typical
states realized at mz = 1/4, 1/2, and 3/4 in Figures 2a–c.

Now we proceed to the second model HD. Formally, it
resembles the boson Hubbard model discussed in [35]:

Hboson = −
1

2
J
∑
〈i,j〉

(
Φ†iΦj + Φ†jΦi

)
+ V

∑
j

n2
j − µ

∑
j

nj .

(9)

The similarity would be most clearly seen by recalling the
following relations:

[nj , Φ
†
k] = δj,knj , [nj , Φk] = −δj,knj

[Szj , S
±
k ] = ±δj,kS

±
j . (10)

Of course Szj may be regarded as a local particle density
nj. When the disorder in the chemical potential µ is ab-
sent, it is known [35] that the Mott insulating phase with
〈nj〉 = n (∈ Z) undergoes the superfluid-insulator transi-
tion into the gapless superfluid phase as the ratio J/V is
varied.

In the atomic limit (J = 0), HD +HZeeman reduces to
the 1-site problem

D
∑
j

(Szj )2 −H
∑
j

Szj (11)

and we can easily see that it contains plateaus for S ≥ 3/2.
Again, the nearest-neighbor coupling J competes with the
single-ion anisotropyD(> 0) which stabilizes the plateaus.
Hence, we may expect that the plateau becomes more and
more unstable with the ratio D/J decreased and that be-
low a certain critical value they disappears. For S = 3/2,
the critical value is obtained in [15,36].

However, it differs from the boson Hubbard model in
the following respects. First, there is no free kinetic part
for S ≥ 1; the spin current∑

j

−i

2
J
(
S+
j+1S

−
j − S

+
j S
−
j+1

)
(12)

satisfying the continuity equation is not conserved even
for the XY -part. In addition to this, J already contains
the “density-density” interaction.

3 Bosonization and CDW-picture

We have presented simple arguments clarifying the physics
underlying the plateau phenomena. They are valid in the
vicinity of the atomic limit (J ≈ 0 for HD and δ ≈ 1 for
Halt).

On the other hand, however, there is yet another
method appropriate to investigate the weak-coupling
limit-bosonization [37]. In the present section, we give
an alternative phenomenological approach using bosoniza-
tion.
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In the present section, we consider spin chains (or,
quasi-one-dimensional systems) which are rotationally in-
variant with respect to some symmetry axis (say, z-axis).
The external magnetic field is applied along this axis and
hence Sztot is conserved.

In the absence of a magnetic field, spin chains show a
variety of low-energy behaviors [3,38,39]. However, when
the field is strong enough, they will become gapless; the
gapless low-energy degrees of freedom will be carried by
the staggered component of the azimuthal angle φ of each
spin which represents long-wavelength (antiferromagnetic)
fluctuations. The soliton number of φ is related to the
conserved Sztot.

Such a low-energy Hamiltonian would be given by that
of a harmonic liquid, or, the Luttinger liquid named by
Haldane [40]. The model contains two important phe-
nomenological parameters “sound velocity” vS and the
compactification radius2 R. To relate them to physical
observables, we consider the twisted boundary condition
both along the spatial (chain) direction and along the
imaginary-time direction. Namely, we impose the follow-
ing two boundary conditions on the azimuthal angles in
performing the path-integral: (i) φ(x + L, τ) = φ(x, τ) +

Φ
(x)
0 (τ ∈ [0, β]), and (ii) φ(x, β) = φ(x, 0) + Φ

(τ)
0 . The di-

mension along the imaginary-time axis (τ -axis) β denotes
the inverse temperature 1/(kBT ).

The Tomonaga-Luttinger Hamiltonian describing the
long-wavelength fluctuations of the azimuthal angle
around the antiferromagnetic configuration is given by

HTL =

∫ L

0

dx

2π
vS

[
π2

R2

p

p Π2 p

p +R2 p

p (∂xφ)2 p

p

]
, (13)

where the angular variable φ is defined on a unit cir-
cle, i.e. φ ∼ φ + 2π. The canonical momentum Π and
the azimuthal angle φ satisfy the commutation relation
[φ(x),Π(y)]equal time = iδ(x − y). In the following, it is

convenient to define the dual field φ̃ by

Π(x) ≡
1

π
∂xφ̃(x) . (14)

Passing to the path-integral representation of the (low-
energy) partition function, we obtain

Z(β) =

∫
Dφ exp

{
−

∫ β

0

dτ

∫ L

0

dx
1

2

[(
R2

πvS

)
(∂τφ)2

+

(
vSR

2

π

)
(∂xφ)2

]}
. (15)

In the path-integral formalism, the effect of imposing
the type-(i) boundary condition (spatial twist) can be
realized by a change of variable φ(x, τ) ≡ φnew(x, τ) +

Φ
(x)
0 x/L with φnew obeying the periodic boundary condi-

tion φnew(x+ L) = φnew(x). Plugging this into HTL and

expanding the free energy up to (Φ
(x)
0 /L)2, we can easily

2 It determines the radius of the circle on which the φ-field
is defined.

see that the coefficient of the term (∂xφ)2 is nothing but
the spin stiffness Dspin and is given by

Dspin =

(
vSR

2

π

)
. (16)

In order to obtain the partition function under the twisted
boundary condition along the τ -direction, we have only to

insert the twist operator e−i
∑

(S−Szj )Φ
(τ)
0 into the trace3:

Ztwisted = Tr e−βHe−i
∑

(S−Szj )Φ
(τ)
0 . (17)

This suggests that the twist in the τ -direction is equivalent
to applying the imaginary field in the z-direction. Again

expanding the free energy in powers of Φ
(τ)
0 , we obtain

1

L
F (Φ0) = fPBC +

(
iΦ

(τ)
0

β

)

×(S −mz(H)) +
1

2

(
Φ

(τ)
0

β

)2

χ(H;β) + · · · (18)

From this, it follows that the susceptibility χ(H;β) is
nothing but the “stiffness” along the (imaginary-) time
direction, which couples to (∂τφ)2 instead of (∂xφ)2. The
simple form of HTL enables us to obtain the following
β-independent expression

χ(H) =

(
R2

πvS

)
. (19)

Of course, the relations

χ(H)Dspin =

(
R2

π

)2

,
Dspin

χ(H)
= v2

S (20)

are well-known in the hydrodynamic theory of magnets.
The equation (20) provides a useful way to calculate R
(and exponents) directly from physical observables χ and
Dspin. It is a matter of taste which we take as a fun-
damental set of parameters (vS , R) or (χ(H), Dspin). In
the plateau phase, the magnetic excitation (“particle”)
is gapped and the correlation 〈S+

i S
−
j 〉 is short-ranged.

Therefore, we may expect that both quantities Dspin and
χ(H) vanish.

For a technical reason, hereafter we use the rescaled
field

φnew ≡ Rφ (21)

instead of φ (φ̃) defined on a circle of a fixed radius 1 (1/2)
and omit the label “new”.

The CDW approach starts from the following density-
wave expression of the spin operators:

sz ∼ mz +
R

π
∂xφ̃+ const

p

p cos
[
2k̃Fx− 2Rφ̃

]
p

p (22)

s± ∼ cos(πx)
p

p e±i
φ
R

p

p +
p

p eiπx±i
φ
R cos

[
2k̃Fx− 2Rφ̃

]
p

p .

(23)

3 The appearance of S − Szj instead of −Szj is related to
the requirement of the single-valuedness on the spin coherent
states.
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The first and the second terms in (22) correspond to the
averaged density while the third one expresses the local
fluctuation in Sz (or, a density wave). If we treat the sys-
tem e.g. HD +HZeeman classically, a soft mode appears
only at the wave vector q = 0. This is in contrast to the
fact that whenH = 0, D = 0 there occur two soft modes at
q = 0 and q = π which suggest the existence of two types
of low-energy fields [6] one is staggered and the other is

uniform. That is, a gapless (q = 2k̃F ) fluctuation around
the above density wave is of the non-classical origin (see
[10] for an early discussion about the non-classical soft
mode). Note that the second term can also be written as
RΠ(x).

The second expression (23) may be derived by using
the polar representation

S±j = (−1)je±i
φ
R

√
(S ∓ Szj )(S ± Szj + 1) . (24)

These expressions can be derived step by step for some
restricted models [16]. Alternatively, we may obtain them
assuming that the low-energy dynamics of spin chains in a
strong field is described by a single-component Bose fluid
[40]. The equations (22, 23) play a fundamental role in the
following argument.

We first determine the characteristic wave vector k̃F
by an intuitive argument. Let us recall the physical mean-
ing contained in the expression of sz. Apparently, the first
term denotes the (non-zero) average density of sz and the
second one corresponds to the long-wavelength part of the
density fluctuation, which ensures the correct commuta-
tion relation between φ and Sz. The last one represents
local density fluctuations. As is well-known in the the-
ory of CDW [21], the second term can be derived from

the density-wave part
p

p cos[2k̃Fx − 2Rφ̃]
p

p by introduc-
ing the notion of a local wave vector k(x). The local wave
vector k(x) is defined so that the 2kF -density wave may

incorporate the local distortion caused by the phason φ̃:

2k(x) ≡ ∂x
(

2k̃Fx− 2Rφ̃
)

= 2k̃F − 2R∂xφ̃(x) , (25)

where we have assumed that 2k̃F is given by a certain
function f(mz) of the average magnetization mz. On the

other hand, the shift k̃F 7→ k(x) is caused by the density
fluctuation mz 7→ mz + δmz(x) and hence

2k(x)− 2k̃F = f ′(mz)δmz(x) = −2R∂xφ̃(x) . (26)

Since s± ∼ e±iφ(x)/R creates changes sz 7→ sz ± 1, the

fluctuation δmz(x) should equal to R∂xφ̃/π, that is ,

f ′(mz) = −2π . (27)

Requiring that 2k̃F = f(mz) = 0 for the saturated (or
fully polarized) state with mz = S, we obtain

k̃F = π(S −mz) . (28)

Note that it agrees with the one deduced [16] from the
composite-spin model [38]. The extension to other mod-
els such as ladder-type ones is obvious from the argument

given in [16]. It is worth mentioning that the same re-
sult can be inferred from the Lieb-Schultz-Mattis argu-
ment [15].

Obviously, the translation by n sites in the spatial di-

rection can be realized by shifting the φ and φ̃ instead of
performing x 7→ x+n, because these two operations yield
the same result for the density waves. To be concrete, the
spatial translation by one site can be realized as the fol-
lowing (simultaneous) discrete symmetry-operations:

φ 7→ φ+ πR , φ̃ 7→ φ̃−
k̃F

R
· (29)

The first one has a simple physical meaning. If we
treat spin systems classically, spins are aligned in
a staggered manner in the xy-plane: (S+

j , S
−
j ) =

((−1)jeiφ0/R, (−1)je−iφ0/R). Hence, we have to increase
the azimuthal angle φ0/R by π to translate the wave-

pattern by one site. The second operation for φ̃ is
magnetization-dependent and less obvious. It is important
to note that the wave length of the above non-classical

2k̃F -(Sz) density wave is given by λ = π/kF which cor-

responds, in the φ̃-space, to the period π/R of the φ̃-field
itself.

Now we proceed to investigating how commensurabil-
ity restricts the types of allowed interactions. We consider
a rather general situation. That is, we allow several inter-
actions with different spatial periods (Qa). In that case,
the spatial period QHam of the (full) Hamiltonian is given
by the least common multiple of periods Qa of the con-
stituent interactions. Here a problem arises about how to
separate interactions (or, more appropriately, perturba-
tions) from the unperturbed part. Although there is no
general guiding principle, we should choose the partial
Hamiltonian, which is gapless and is described by a single-
component Luttinger liquid for low-energies, as the un-
perturbed part. For example, one possible (and probably
most natural) choice would be to take the uniform nearest-
neighbor Heisenberg chain as the unperturbed Hamilto-
nian for Halt and HD. If a large gap (or, a large plateau)
always opens in the whole parameter space treated, a
weak-coupling treatment like this breaks down.

The interaction may formally be written as

V =
∑
j∈Λ

∑
a

J(a)(j)fa({Sj}) , (30)

where the index j runs over lattice sites. Here we have
introduced coupling constants J (a)(j) for different types
(labeled by a) of interactions (say, the nearest-neighbor
exchange and the single-ion anisotropy). The functions
fa({Sj}) are polynomials of local spin operators within
a finite range around the site-j. For example, we prepare
the following two sets of (J (a), fa) for the bond-alternating
NNN chain Halt:(

J(1)(j) = (−1)jδ, f1({Sj}) = Sj · Sj+1

)
,(

J(2)(j) = J2, f2({Sj}) = Sj · Sj+2

)
. (31)
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Since J(a)(j) is a function with a period Qa, the coupling
constants J(i)(j) can be expanded in a Fourier series:

J(a)(j) =

Qa−1∑
K=0

J
(a)
K ei

2π
Qa

Kj . (32)

After an appropriate continuum limit is taken, polynomi-
als fa({Sj}) may be expressed in terms of bosonic vari-

ables φ and φ̃ carrying the low-energy degrees of freedom.
Since the system we are treating is axially symmetric,
terms like (s+)m(s−)n (m 6= n) are not allowed; the fac-
tors e+iφ/R and e−iφ/R always cancel each other and only

the φ̃-field appears.
Therefore, the full interaction can be written as a sum

of terms like

ei
2π
Qa

KxeiN(2k̃F x−2Rφ̃) = ei(
2π
Qa

K+2Nk̃F )xe−2iNRφ̃ (N ∈ Z).
(33)

In this expression, some terms will contain oscillating
factors and may be neglected in the low-energy theory.
The remaining non-oscillatory terms have wave vectors
equal to integer-multiples of the reciprocal lattice vector
G = 2π/QHam and hence should satisfy

2π

QHam

QHam

Qa
K + 2Nk̃F ≡ 0 (mod 2π/QHam) .

(34)

These interactions are allowed by a finite lattice period
QHam and hence we may call them the Umklapp inter-

actions. Since k̃F = π(S − mz) and QHam/Qa ∈ Z, the
above condition reads

NQHam(S −mz) ∈ Z . (35)

This is nothing but the selection rule obtained forQHam =
1 in [16] and for general QHam in [15].

The integer N is called the order of the commensu-
rability of the locking potential. For example, an N = 2
interaction is generated from bond alternation for Halt
(S = 1/2 and mz = 1/4) [19]; it leads to two degenerate
ground states in a magnetic field. The commensurability
condition (35) is independent of the strength of the inter-
action and this explains the reason for the exactness.

Of course, (35) alone does not imply the existence of
a plateau at that value of mz; in order for the plateau
to appear actually, the locking interaction allowed by the
condition (35) should be relevant in the renormalization-
group sense. However, once we have known that the plateau
does appear , we can tell from (35) that its position is un-
changed by a small change of the parameters which keeps
the reciprocal lattice vector the same.

Before concluding this section, let us find the relevant
order of the commensurability N for plateaus discussed in
the previous section. For the model HD, the atomic-limit
argument tells us that all the density waves appearing in
the intermediate plateaus have the same period as that
of the underlying lattice. Therefore, the plateaus of the

model HD are described by the case N = 1 in the weak-
coupling region. A similar argument applies to the mz =
1/2-plateau of Halt(S = 1) (see Fig. 2b).

On the other hand, the pattern of the density wave
occurring at mz = 1/4, 3/4 for the model Halt(S = 1)
does not exactly match that of the lattice as can be seen
in Figure 2a and c; the wave length of the former is twice
as large as the period of the lattice and the weak-coupling
theory is given by the N = 2 model. Of course, all these
conclusions derived by an intuitive argument agree with
those of the commensurability condition (35).

4 Effects of anisotropy

4.1 Plateau versus XY-Order

In the previous section, we have treated the case of ax-
ially symmetric chains where the external field is ap-
plied along the symmetry axis (z-axis). In the language
of many-particle systems, this is equivalent to introducing
the chemical potential coupled to the total particle num-
ber. In this case, the situation is rather simple; smooth
increase of magnetization implies that magnetic excita-
tions which change Sztot by ± 1 are gapless for that value
of the field. Although conservation of the particle-number
is fundamental in many-particle systems, corresponding
conservation law ([H, Sztot] = 0) is guaranteed only for re-
stricted models in spin systems; in many cases, a certain
kind of axial-symmetry-breaking anisotropies exists and
hence the above conservation law is violated.

For this reason, we consider the effect of weak
anisotropies on the plateaus. For concreteness, we treat
(i) the so-called E-term and (ii) the exchange anisotropy
in the xy-plane, both of which break the conservation law
[H, Sztot] = 0. The E-term is given by

E
∑
j

[
(Sxj )2 − (Syj )2

]
=
E

2

∑
j

[
(S+
j )2 + (S−j )2

]
(36)

and it is known to exist in magnetic materials such as
NENP.

A term like this is invariant not only under the one-
site translation but also under the symmetry operation
(the inversion of Sz)

S±j 7→ S∓j , Szj 7→ −S
z
j , (37)

which is equivalent to

φ 7→ −φ , φ̃ 7→
π

2R
− φ̃ . (38)

The same argument applies to the exchange anisotropy

γ
∑
j

(Sxj S
x
j+1 − S

y
j S

y
j+1) = γ

∑
j

1

2
(S+
j S

+
j+1 + S−j+1S

−
j ) .

(39)
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Hence we can incorporate the effect of these anisotropies
into the continuum theory by adding∫

dx
p

p cos

(
2φ

R

)
p

p . (40)

Of course, we can construct it explicitly from the contin-
uum expression like (22, 23). Note that it is allowed to
exist regardless of the value of mz (or the commensura-
bility condition).

Thus, we may expect that the low-energy behavior in
the vicinity of a plateau (at mz) can be captured by the
following multi-coupling sine-Gordon model

H = HTL + λ1

∫
dx

p

p cos
(

2NRBφ̃B
)

p

p

+ λ2

∫
dx

p

p cos

(
2

RB
φB

)
p

p −
RB

π
H

∫
dx∂xφ̃B .

(41)

The Tomonaga-Luttinger Hamiltonian HTL is given by
(13) with φ replaced by φ/R and the coupling constant
λ2 is proportional to E or γ. In writing down the above
effective action, we have assumed that the locking poten-

tial
p

p cos 2NRBφ̃B
p

p responsible for the formation of a
plateau is unique for the value ofmz considered. Of course,
the external field is supposed to be so strong that the value
of magnetization mz and the integer N satisfy the condi-
tion (35). We have written the radius R for the bosonic
model as RB to distinguish it from the one for the fermion-

ized model. It is important to note that the filling (or, k̃F )
affects only the second term (λ1). The external field H is
added to control the commensurability and is measured
from the center of the plateau. That is, the field H in (41)
actually denotes H −Hcenter .

As can be easily seen, the λ1 tends to order the sys-
tem into the density-wave (or, plateau) phase, whereas
the λ2 favors the staggered order in the xy-plane. There-
fore, the Hamiltonian (41) models the competition be-
tween the plateau formation and the XY -order. This kind
of models was studied in the context of commensurate-
incommensurate (C-IC) transitions in the presence of dis-
locations [41]4.

Naive power-counting argument tells us that the phase
diagram will differ qualitatively according to the order
of the commensurability N . For N ≥ 3, two cosine-
interactions can not be relevant at the same time. In
other words, they do not compete with each other for
any RB; for RB <

√
2/N , a commensurate density-wave

phase appears, while a staggered planar phase is realized
for RB > 1/

√
2.

On the other hand, the case N = 1 is slightly compli-
cated because the tendency towards the density-wave (λ1)
and that towards the planar order (λ2) compete in the in-
terval 1/

√
2 < RB <

√
2. In this sense, the order N = 2 is

marginal; λ1 and λ2 weakly compete only for RB = 1/
√

2.
Note that the case N = 1 is of direct relevance to e.g. the

4 The presence of U(1)-breaking anisotropy λ2 corresponds
to adding dislocations.

mz = 1/2-plateau in the modelHalt(S = 1) and the model
HD(S = 3/2); the mz = 1/4 plateau of the model Halt
(S = 1/2 or S = 1; see the Sect. 2) falls under the N = 2
case.

To investigate the effect of two mutually competing
interactions, we consider the case H = 0 (or, more pre-
cisely, H = Hcenter) first. Since we have no exact re-
sult for the case with both λ1 and λ2 non-vanishing, we
use the renormalization-group (RG) technique. The RG
β-function can be obtained by computing the operator-
product expansions [42]. The result for H = 0 is given by
the following set of three coupled equations:

dλ1

d lnL
= (2−N2R2

B)λ1 (42)

dλ2

d lnL
=

(
2−

M2

4R2
B

)
λ2 (43)

d lnRB
d lnL

= −
π2

2
N2R2

B(λ1)2 +
π2

2

M2

4R2
B

(λ2)2 . (44)

In the present case, the so-called spin-wave index M is
equal to 2. The case M = 1 is important in the C-IC
transitions (and also the case of staggered field). It has an
obvious line of fixed points (the Gaussian fixed line) λ1 =
λ2 = 0, RB = arbitrary. Moreover, for N = 2, two non-
trivial fixed lines appear: (i) λ1 = λ2, RB = 1/

√
2 and (ii)

λ1 = −λ2, RB = 1/
√

2. The three fixed lines are analogous
to those of the S = 1/2XY Z model; they are all belong to
the Gaussian universality class with continuously varying
exponents.

For N = 1, the flow always runs away from the Gaus-
sian fixed line unless either λ1 or λ2 is vanishing. WhenRB
is much smaller than 1/

√
2 and the anisotropy λ2 is suffi-

ciently small, the system is in a commensurate (plateau)
phase (R ↘ 0, |λ1| ↗ ∞), while an xy-ordered phase is
realized when RB �

√
2. The situation is slightly com-

plicated in the interval 1/
√

2 < RB <
√

2 because of the
competition between the locking potential and the planar
anisotropy.

A simple dimensional argument tells us that the RG-
flow is governed by a single dimensionless parameter5

(λ1)
1

2−R2
B

(λ2)
1

2−1/R2
B

(45)

and that there is a certain “marginal” surface λ1 =
F (λ2, RB); the density-wave phase is realized only for
λ1 < F (λ2, RB). It is easy to show that F (λ2, RB = 1) =
± λ2. Non-trivial fixed point does not appear within our
1-loop analysis. In other words, two phases are switched
across this surface. Shortly by solving a special case explic-
itly, we argue that despite the result of the 1-loop RG this
in fact corresponds to the Ising transition (see Fig. 3 for
the schematic λ1-λ2-R phase diagram). The appearance of

5 This parameter can be regarded as a ratio between
two mass-scales introduced by the locking potential and the
anisotropy.
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Fig. 3. Sketch of the λ1-λ2-R phase diagram obtained from
RG-argument and Luther-Emery method. Shaded surface cor-
responds to the Ising transition, which separates the commen-
surate plateau phase and the XY -ordered phase.

the Ising critical point is found also in a similar but differ-
ent (U(1)-symmetric) multi-coupling sine-Gordon model
using form-factor approach [43].

For N = 2, on the other hand, there appear four criti-
cal surfaces on which the system flows onto the non-trivial
fixed lines λ1 = ± λ2 mentioned above; points off the sur-
faces flow (suppose that both λ1 and λ2 are non-zero) ei-
ther to the commensurate phase characterized by RB ↘ 0
or to the xy-ordered phase (RB ↗∞). Note that the tran-
sitions occurring on them are of the second order6.

This implies that the existence of any small anisotropy
changes the situation not only quantitatively but also
qualitatively; the gapless (“metallic”) phase in the axially
symmetric (λ2 = 0) case is replaced by the xy-ordered
gapped one (see the RB-axis of Fig. 6). Since this gapped
excitation is not related directly to magnetization, the ex-
istence of a gap does not imply the appearance of a plateau
in this case. In this sense, the analogy to the Mott insula-
tor is not so useful in the axially asymmetric case.

Furthermore, the presence of the surfaces of second-
order transitions replaces a KT phase boundary (open
circle in Fig. 6a) separating the gapless phase from the
commensurate plateau (or, “Mott-insulating”) by a non-
universal second-order one (open circle in Fig. 6b). Of
course, the location of the phase boundary is slightly
shifted.

4.2 Transition in a field

Now, we return to the problem of how the magnetization
process gets modified by the competition of the two in-
teractions in the N = 1 case. The effect of the field H
has to be taken account in this subsection. The problem
is difficult to solve exactly because the external field H

6 A similar situation was found [44] for the case (M,N) =
(4, 1) in the context of the clock model. What was found in [44]
is a second-order transition across the Ashkin-Teller critical
line.

does not couple to a conserved quantity any longer and
it plays an essential role. However, some essential features
of the N = 1 system can be captured by the so-called
Luther-Emery technique [45].

For N = 1, by tracing back the usual bosonization-
mapping, we can rewrite the Hamiltonian (41) as the fol-

lowing fermionic one (JL/R =
p

p ψ†L/RψL/R
p

p ):

H(F ) = iv
(0)
F

∫
dx
[
−ψ†R∂xψR + ψ†L∂xψL

]
+ g1

∫
dx

p

p

(
J2
L + J2

R

)
p

p + g2

∫
dx

p

p JLJR
p

p

+m

∫
dx
[
ψ†LψR + ψ†RψL

]
+ g3

∫
dx
[
ψ†Lψ

†
R + ψRψL

]
−H

∫
dx
[

p

p ψ†LψL
p

p +
p

p ψ†RψR
p

p

]
. (46)

Note that the locking potential (λ1) and the anisotropy
(λ2) are expressed as the fermion mass-term and the U(1)-
breaking term (g3), respectively. Since we have defined the
radius RF of the fermionic theory by

RF = NRB , (47)

the Zeeman term can be rewritten as

−H
RB

π

∫
dx∂xφ̃B = −

H

N

RF

π

∫
dx∂xφ̃F

=
H

N

∫
dx
[

p

p ψ†LψL
p

p +
p

p ψ†RψR
p

p

]
.

(48)

Similarly, the planar anisotropy is recasted as follows:∫
dx

p

p cos

(
2

RB
φB

)
→

∫
dx
[

p

p (ψ†Lψ
†
R)N

p

p +
p

p (ψRψL)N
p

p

]
. (49)

Restricting ourselves to the special case N = 1, we ob-
tain (46).

The marginal couplings g1 and g2 are chosen so that
H(F ) may correctly reproduce the bosonic model (41). For
example, we require

NRB =

[
(v

(0)
F + g1/π)− g2/(2π)

(v
(0)
F + g1/π) + g2/(2π)

]1/4

(= RF ) .

When g2 = 0, the fermionic Hamiltonian (46) reduces to a
free theory and can be diagonalized exactly. The spectra
consist of two branches

ε1(q) =√
m2 + g2

3 +H2 + (v′F q)
2 − 2

√
(H2 + g2

3)m2 +H2(v′F q)
2

(50)
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Fig. 4. Magnetization curve of H(F ) for g2 = 0 (RF = 1)
and m = 0.1. The broken-, solid-, and dotted lines correspond
to g3 = 0, 0.03, and 0.12(> m), respectively. Note that the
square-root behavior for g3 = 0 is smeared when g3 is switched
on. The z = 1 Ising transition occurs at the critical field Hc =
0.0954 . . . on the solid line.

and

ε2(q) =√
m2 + g2

3 +H2 + (v′F q)
2 + 2

√
(H2 + g2

3)m2 +H2(v′F q)
2 ,

(51)

where v′F = v
(0)
F + g1/π. The branch ε1 is always lower-

lying than ε2 and is important to the critical behavior.
First we consider the case with m > g3, namely, a

weakly anisotropic chain. The gap of the first branch

|m−
√
g2

3 +H2| (52)

closes not at H = m but at a shifted critical field
Hc =

√
m2 − g2

3, where a quantum transition driven by
the magnetic field (or, the chemical potential) occurs. On
top of the shift of the critical field, the universality class
of the transition is altered; instead of a critical point with
the dynamical exponent z = 2 for g3 = 0 [35,46], the
z = 1 2D Ising-type one occurs for g3 6= 0. Above the
critical field, the system is ordered in the XY -plane in a
staggered manner. This can be understood intuitively by
noticing that the external field drives the system from the
non-degenerate N = 1 commensurate phase (H < Hc)
into the two-fold degenerate xy-ordered phase.

Since the external field drives the system in the direc-
tion of the (Ising-)temperature7, the magnetic suscepti-
bility, which corresponds to the specific heat in the Ising
model, diverges at Hc logarithmically

χ(H) ∼ log |H −Hc| (H → Hc ± 0) . (53)

Recall that near the edges of the plateau it diverges like
χ(H) ∼ 1/

√
|H −Hc| (H → Hc + 0) for the symmetric

case g3 = 0. When the axial anisotropy (g3) exists, the
system is gapped on both sides of the critical field, whereas
the gap exists only below the critical field when g3 = 0.

The magnetization curve near the plateau can be ob-
tained easily. We show it in Figure 4. The magnetization

7 In fact, the combination
√
g2

3 +H2 controls the transition.

is measured from the value of the plateau. As long as g3

is smaller than m, magnetization abruptly increases (the
slope has a logarithmic singularity) at H = Hc(≈ m) and
the remnant of the plateau may be observed (as the Ising
transition). It is important to note that magnetization mz

ever increases although the gap opens even above Hc.
At g3 = m, the critical field vanishes (Hc = 0) and the

Ising transition occurring here should coincide with the
H = 0 transition. That is, the marginal surface which we
have pointed out in the RG analysis done for H = 0 (see
Fig. 3) is actually the Ising critical surface.

The situation drastically changes for g3 > m. In this
case, the critical field Hc =

√
m2 − g2

3 does not ex-
ist; there is neither a gap-closing point nor singularity
in susceptibility. Consequently the plateau is completely
smeared out (see the dotted line of Fig. 4).

Up to now, our analysis has completely neglected the
marginal interaction g2. Taking into account the result of
the RG analysis, however, we may expect that the pres-
ence of it (i.e. non-zero g2) alters the situation only quan-
titatively8; there is the (constant-field H = Hcenter) Ising
transition separating two different strong-coupling limits
(i) R ↗ ∞, |λ2| ↗ ∞ and (ii) R ↘ 0, |λ1| ↗ ∞. In the
density-wave phase, the renormalized parameters satisfies
mren > gren3 ; the (Ising) critical field still exist and the
remnant of the plateau may be observed as an abrupt
increase of the magnetization. In the xy-ordered phase,
on the other hand, the critical field disappears and the
plateau is wiped out. This situation is summarized in Fig-
ures 4 and 5b. The Ising transition point on the RB-axis
corresponds to a point on the (Ising) critical surface in
Figure 3. Since the renormalized radius RrenB approaches
0 as RB → 0 (the classical limit), the “plateau” phase
borders the incommensurate phase on the line RB = 0. It
is worth mentioning that the value of magnetization is not
fixed even in the “plateau” phase, contrary to the axially
symmetric case.

The Ising transition in a field was pointed out also by
Affleck [47] on the basis of the phenomenological Landau-
Ginzburg model in the context of the onset of magneti-
zation of the S = 1 Haldane-gap antiferromagnet. Here
we argue for a more general case that the Ising universal-
ity is unchanged even when the interaction g2 is present
and that the transition point continues to the zero-field
(H = Hcenter) one (see also [48]).

To summarize, for sufficiently small λ2, the situation is
quite different according to the value of RB. For RB >

∼
√

2,
a small anisotropy orders the system into the gapped xy-
phase; no field-induced transition occurs and magnetiza-
tion gradually increases.

In the interval 1/
√

2 < RB <
√

2, both the locking
potential and the XY -anisotropy are relevant. Different

phases appear according to the ratio between (λ1)1/(2−R2
B)

and (λ2)1/(2−1/R2
B); when the former is larger than the

latter, the plateau is preferred to the XY -order. In this
case, there exists a critical field Hc, where the z = 1 Ising

8 This would be supported by the fact that no Lorentz-
invariant marginal operator exists around the Ising fixed point.
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Fig. 5. Schematic R vs. field diagram for N = 1 in the presence
of a weak anisotropy (b). Field H is measured from the center
of the plateau The same one for the isotropic case (a) is also
shown for comparison. Owing to the competition between two
relevant interactions, some of the transitions change their uni-
versality class. Note that the word “plateau” is used only to dis-
tinguish different phases. Magnetization is not locked strictly
even in the “plateau” phase.

transition occurs with respect to the external field. The
existence of two (competing) relevant interactions brings
about the Ising transition, which in fact is connected to
the same one induced by a field.

For RB <
∼ 1/

√
2, on the other hand, the plateau phase

is stable against the XY -anisotropy. Nevertheless the
field-induced transition again belongs to the z = 1 Ising
universality. This conclusion is derived as follows. First we
recall what happens for the case λ2 = 0 (or g3 = 0). The
relevant λ2-interaction opens a gap and then it is reduced
by an increasing field to vanish at the critical field. Accord-
ing to Schulz [46], the marginal interaction g2 effectively
vanishes at this critical point and hence the system be-
comes free (RF = RB = 1). Our result (50) implies that
the anisotropy g3 is relevant around this z = 2 critical
point and that the crossover to another critical point will
occur; we may conclude that this is the Ising critical point.
That is, the whole phase boundary between the “plateau”
phase and the xy-ordered one (see Fig. 5b) including a
point on the RB-axis belongs to the Ising universality.

For N = 2, there are no competing interactions; when
λ1 is relevant the XY -anisotropy λ2 is irrelevant, and
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Fig. 6. Schematic R vs. field diagram for N = 2 in the pres-
ence of a weak anisotropy (b). The same one for the isotropic
case (a) is also shown for comparison. Transitions are almost
unchanged aside from the fact that the infinite-order (KT)
incommensurate-plateau transition in the fixed-mz case is re-
placed by the second-order XY -plateau one when a small
anisotropy is included.

vice versa. When the radius RB takes such a small value
as to form the plateau, the transition driven by the mag-
netic field is always of z = 2 (note that z = 1 can occur
as a consequence of the coexistence of two competing rel-
evant interactions for the N = 1 case) and thus the rem-
nant of a plateau can be visible as a square-root behavior
of magnetization. As RB (or |λ2|) is increased, a second-
order transition into the XY -ordered phase occurs, whose
exponents depend on initial couplings and hence are non-
universal (see Fig. 6b). Recall that such a transition driven
by RB is of the KT-type in the absence of the anisotropy.

If the planar order exists, the magnetization curve is
smooth and there is no plateau.

5 Discussion

We have investigated a family of novel gapped ground
states realized in a magnetic field . In Section 2, we took
two models as typical examples to explain how unex-
pected plateaus appear in the process of magnetization.
In the axially symmetric (that is, the systems are invari-
ant under arbitrary rotations with respect to, say, the
z-axis) cases, analogy to the Mott insulator is useful in
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understanding the underlying physics. The lowest exci-
tations having δSztot = ± 1 are identified with particles
and the conserved quantity Sztot (measured from a certain
model-dependent reference point) corresponds to the num-
ber of particles; when these particles have a finite gap at
some values of magnetization, plateaus are formed there.

At least for the models we have considered, we are
able to identify the excitation corresponding to the parti-
cles, and effective “Coulomb interactions” and “hoppings”
determine whether the particle localizes or not as in the
ordinary metal-insulator transitions.

In Section 3, we have presented an alternative ap-
proach to the plateau problem. Assuming that the de-
scription based on the (single-component) Tomonaga-
Luttinger liquid is valid for a wide class of (but not all!)
models in a strong field, we can view the occurrence of
plateaus as a consequence of the existence of relevant
“Umklapp” interactions9. They play a role of locking po-
tentials in the CDW; according to their commensurabil-
ity, different types of commensurate density-wave states
will appear, which are identified with the gapped plateau
states in a field.

Some of the plateaus which we have considered in the
present paper can be generalized to higher dimensions,
while bosonization and other methods peculiar to one di-
mension are no longer applicable. For example, we can
easily verify that the model HD have plateaus for suffi-
ciently large D (more precisely, sufficiently small J/D).
Repeating the mean-field analysis in [35,49], we can show
that the critical value (J/D)c decreases like 1/d as the di-
mensionality d becomes large. Hence we expect that these
plateaus are more and more suppressed in higher dimen-
sions.

Then the effects of small axial-symmetry-breaking
anisotropies were considered in Section 4. In general, such
anisotropies tend to order the system in the xy-plane. In
contrast to the symmetric cases, the total magnetization
is not associated with any conserved quantities and the
analogy to the Mott-insulator is not so useful.

Under several assumptions, we investigated a simpli-
fied model the multi-coupling sine-Gordon model by the
RG method and the Luther-Emery technique. Because of
the presence of interactions with different symmetries, the
phase diagrams thus obtained (Figs. 5 and 6) are rich.

In particular, when the orderN of the locking potential
is unity, the tendencies towards the formation of a plateau
and towards the XY -ordering compete with each other.
As a result, a new second-order transition occurs. The
quantum phase transition induced by the field can change
its universality class from the z = 2 one, which is the
same as the one expected in generic 1-D metal-insulator
transitions [35], to the z = 1 (Ising) one. Correspondingly,
the well-known square-root behavior [50] of magnetization
is modified.

Finally, we comment on two complementary pictures
for spin systems–vector picture and particle picture. Of
course, the former has a direct analogy to the classical

9 We use the terminology Umklapp here in the sense that
they are allowed by the finiteness of the lattice period.

theory of the spin, where a spin is represented as a rigid
rotor. Within the vector-picture, magnetization curves
might look more or less similar to the classical linear ones.
This picture was very successful at least in clarifying the
low-energy physics of the Heisenberg-type models in the
absence of a field [3,6].

On the other hand, we mainly rely on the particle-
picture to explain the exactness and the rationality found
in the plateau phenomena. The Umklapp interactions,
which come from the discreteness of the underlying lat-
tices and are crucial in explaining the exactness and the
rationality, do not exist in the vector-picture. When we
chose the path-integral formalism [6], spin systems are for-
mally expressed as interacting classical rigid rotators. At
this point, the spins are nothing but unit vectors which are
specified by polar and azimuthal angles. In a sufficiently
strong field, however, only the slowly-varying component
of the azimuthal angles remains in the low-energy sector
and the systems look like the Bose fluids [40,51].

The author is grateful to Professor H. Tsunetsugu for draw-
ing his attention to the symmetry-breaking anisotropy in real
systems. This work has been supported by the Special Re-
searchers’ Basic Science Program from RIKEN.
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